YB231Hu01 50 $\mu \mathrm{g}$
 Recombinant Alpha-2-Glycoprotein 1, Zinc Binding (aZGP1) Organism Species: Homo sapiens (Human)
 Instruction manual

FOR IN VITRO USE AND RESEARCH USE ONLY
NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

[PROPERTIES]

Residues: Ala180~Ser298
Tags: N-terminal His-Tag
Accession: P25311
Host: E. coli
Subcellular Location: Secreted.
Purity: >95\%
Endotoxin Level: <1.0EU per $1 \mu \mathrm{~g}$
(determined by the LAL method).
Formulation: Supplied as lyophilized form in 20 mM Tris
$150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 8.0$, containing 1 mM EDTA, 1 mM DTT,

0.01\% sarcosyl, 5\% trehalose, and preservative.

Predicted isoelectric point: 6.6
Predicted Molecular Mass: 14.6 kDa
Applications: SDS-PAGE; WB; ELISA; IP.
(May be suitable for use in other assays to be determined by the end user.)

[USAGE]

Reconstitute in sterile $\mathrm{ddH}_{2} \mathrm{O}$.

TEL:4006-871-227 Web:www. ybio. net Emai1:shybio@126.com

[STORAGE AND STABILITY]

Storage: Avoid repeated freeze/thaw cycles.

Store at $2-8^{\circ} \mathrm{C}$ for one month.
Aliquot and store at $-80^{\circ} \mathrm{C}$ for 12 months.
Stability Test: The thermal stability is described by the loss rate of the target protein. The loss rate was determined by accelerated thermal degradation test, that is, incubate the protein at $37^{\circ} \mathrm{C}$ for 48 h , and no obvious degradation and precipitation were observed. (Referring from China Biological Products Standard, which was calculated by the Arrhenius equation.) The loss of this protein is less than 5% within the expiration date under appropriate storage condition.

[SEQUENCES]

The sequence of the target protein is listed below.
A YLEEECPATL RKYLKYSKNI LDRQDPPSVV VTSHQAPGEK KKLKCLAYDF YPGKIDVHWT RAGEVQEPEL RGDVLHNGNG TYQSWVVVAV PPQDTAPYSC HVQHSSLAQP LVVPWEAS

[REFERENCES]

1. Freije J.P., et al. (1991) FEBS Lett. 290:247-249.
2. Ueyama H., et al. (1993) Biochemistry 32:12968-12976.
3. Freije J.P., et al. (1993) Genomics 18:575-587.
4. Ueyama H., et al. (1991) Biochem. Biophys. Res. Commun. 177:696-703.
